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Abstract

Renormalization group arguments based on a ıϕ3 field theory lead us to expect
a certain universal behavior for the density of partition function zeros in
spin models with short-range interaction. Such universality has been tested
analytically and numerically in different d = 1 and higher dimensional spin
models. In d = 1, one finds usually the critical exponent σ = −1/2. Recently,
we have shown in the d = 1 Blume–Emery–Griffiths (BEG) model on a
periodic static lattice (one ring) that a new critical behavior with σ = −2/3
can arise if we have a triple degeneracy of the transfer matrix eigenvalues. Here
we define the d = 1 BEG model on a dynamic lattice consisting of connected
and non-connected rings (non-periodic lattice) and check numerically that also
in this case we have mostly σ = −1/2 while the new value σ = −2/3 can
arise under the same conditions of the static lattice (triple degeneracy) which
is a strong check of universality of the new value of σ . We also show that
although such conditions are necessary, they are not sufficient to guarantee the
new critical behavior.

PACS numbers: 05.70.Jk, 05.50.+q, 05.70.Fh

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The non-existence of real phase transitions in one-dimensional classical spin models with
short-range interactions is a well-known fact in statistical mechanics. The free energy is
analytic in the entire (real) parameters space of the model. However, if we let, for instance,
the magnetic field H become a complex number, the analytic properties of the free energy
change completely, since now we have complex, Yang–Lee [1] zeros for the partition function
and consequently branch points for the free energy. In the thermodynamic limit, it is usually
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possible to define a linear density of Yang–Lee zeros ρ(H). Remarkably, the zeros accumulate
at some special points, H = HE , named Yang–Lee edge singularities [2], where the density
diverges with an exponent σ , i.e., ρ(H) ∼ |H − HE|σ with σ < 0. As shown in [2] such
behavior is presumably universal in each space dimension d above the critical temperature
(d � 2) and for any T > 0 for d = 1. The critical properties of this special second-order phase
transition are described by a ıϕ3 field theory which leads to mean field results (σ = +1/2) for
d � 6. In any dimension we can estimate σ perturbatively by an ε-expansion, with ε = 6−d,
see [2, 3].

Since the Yang–Lee edge singularity is present in different space dimensions, the simplest
case of one-dimensional models is a suitable laboratory for obtaining exact results and looking
for new critical behaviors which would presumably appear also in higher dimensional models.
In fact, one obtains σ = −1/2 exactly for the one-dimensional spin 1/2 Ising model with
periodic boundary conditions (one ring) whose zeros are exactly known [1] for any finite
number of spins. For the Q-state Potts model it is also possible to derive σ = −1/2 for
any Q �= 1 and positive [4]. The same value appears for the n-vector chain and Ising strips
[5], with the help of numerical computations. In [5, 6], an attempt has been made, see also
[7], to furnish a model independent demonstration that σ = −1/2 for one-dimensional spin
models. The proof assumes that the magnetic field is pure imaginary, and the transfer matrix
eigenvalues are real in the gap of zeros. Recently, another proof [8], which does not assume
such hypotheses, has appeared; it also leads to σ = −1/2. In the present work, in particular,
we have checked numerically that σ = −1/2 in most of the cases even if the magnetic field is
not pure imaginary (no circle theorem).

Furthermore, inspired by [8] we have just shown in [9], for the one-dimensional Blume–
Emery–Griffiths (BEG) and Blume–Capel (BC) models with periodic boundary conditions,
that a new critical behavior with σ = −2/3 can appear if we fine tune the couplings of the
model in such a way that has a triple degeneracy of the transfer matrix eigenvalues. In all of
the above calculations of σ for one-dimensional spin models one assumes periodic boundary
conditions. Here we analyze the effect of a particular dynamic (non-periodic) lattice on the
critical exponent σ . The lattice consists of connected and non-connected rings, see [10],
and corresponds to a one-dimensional version of statistical models on Feynman diagrams
studied in [11, 12]. So, besides summing over spin degrees of freedom we also sum over all
possible connected and non-connected rings with a given number of spins. The calculations,
mostly numerical, of [10] for the Blume–Capel model indicate that the Yang–Lee zeros on the
dynamic lattice tend to overlap with the static results (one ring) in the thermodynamic limit.
The Yang–Lee zeros of the BEG model follow a similar pattern and, although the sum over
polynomials (sum over rings) changes their zeros in a nontrivial way, we still have the usual
critical behavior (σ = −1/2) and the new critical one (σ = −2/3) on the dynamic lattice as
in the static case. This is a strong indication of the universality of the new critical behavior.

Last, it is important to mention that we study here a particular region in the parameters
space of the BEG model (see subsection 3.2) where, differently from [9], the new edge
singularity (σ = −2/3) is now the closest one to the positive real axis which is another hint
that a new critical behavior at the edge singularity might appear also in higher dimensional
spin models where a real phase transition takes places.

In the following section, we find an integral representation for the BEG model on
connected and non-connected rings, see (6) and (7). We also show how to generalize the
partition function of any one-dimensional spin model defined on a ring to connected and
non-connected rings. Expressions (13) and (14) are the starting points for the numerical
calculations of section 3, where we deduce the finite-size relations (24) and (25) necessary
to obtain the exponents yh, σ and the ratio (yh − d)/d. In subsections (3.1) and (3.2) we
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analyze two examples where yh ≈ 2 and yh ≈ 3 respectively. In section 4 we summarize our
conclusions.

2. Spin models on non-connected rings

Originally, the BEG model has been introduced in [13] in order to describe phase separation
driven by superfluidity in a mixture of He3 and He4 where each spin state Si = 0 is associated
with a He3 atom while each atom of He4 is equally described by S = 1 or S = −1. Differently
from the original proposal we interpret here the BEG model as a generalization of the Blume–
Capel [14] magnetic spin model where besides the dipole and quadrupole couplings, J and
� respectively, one introduces another coupling constant K associated with a quartic spin
interaction. Explicitly, we have

ZN =
∑
{Si }

exp β

⎧⎨
⎩J

∑
〈ij〉

SiSj + K
∑
〈ij〉

S2
i S

2
j +

N∑
i=1

[
HSi + �

(
1 − S2

i

)]⎫⎬⎭ . (1)

Originally [13] the coupling H (magnetic field) is conjugated to the order parameter of
superfluidity which corresponds to the magnetization in the magnetic spin model. The sums∑

〈ij〉 extend over nearest neighbor sites. On each of the N sites we can have Si = 0,±1.
Henceforth, we assume ferromagnetic dipole coupling J > 0 while the signs of K and � are
not fixed a priori. The couplings J,K,� and the temperature are all real but we allow the
magnetic field H to be a complex number in general. We will be using the following notation :

c = e−βJ , b = eβK, u = eβH , x = eβ�, x̃ = xc = eβ(�−J ). (2)

We measure the temperature in units of the ferromagnetic coupling J , i.e., the range
0 � T < ∞ corresponds respectively to the compact interval 0 � c � 1. We have
chosen the BEG model since it is Z2 symmetric and includes interesting sub-models. For
� = 0 = K(x = 1 = b) we recover the S = 1 Ising model while the S = 1/2 Ising model is
obtained by freezing the Si = 0 mode with � → −∞ (x → 0). The BEG model contains
also the Q = 3 states Potts model for b = 1/c3, x̃ = u/c3 [15] and the Blume–Capel model
for b = 1.

In order to define the partition function of the BEG model on non-connected rings we
follow the same ideas used in the case of the BC model in [10]. We define the partition function
by an expansion on Feynman diagrams. Namely, we first introduce three zero-dimensional
fields φ+, φ−, φ0 to describe the three spin states Si = +1,−1, 0 respectively. We associate
with each site with spin Si = +1,−1, 0 a corresponding interaction vertex with two lines
eβH φ2

+, e−βH φ2
− and eβ�φ2

0 respectively, in accordance with the two terms inside the brackets
in (1). Introducing a coupling constant g to bookkeep the number of sites (vertices) of the
non-connected rings we can define the generating function of connected and non-connected
rings

G =
∞∑

N=0

gNZnc
N , (3)

via a Feynman integral which becomes in this case a triple integral on R3:

G =
∫

dφ+ dφ− dφ0 e− 1
2 [φaMabφb−g(eβH φ2

++e−βH φ2
−+eβ�φ2

0 )]∫
dφ+ dφ− dφ0 e− 1

2 [φaMabφb]
. (4)
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In (3) we have Znc
N=0 = 1. The repeated indices a, b = +,−, 0 are summed over. The 3 × 3

symmetric matrix Mab is determined by associating each Boltzmann weight of a link which
connects the spins Sa and Sb to a propagator 〈φaφb〉, namely,

M−1
ab = 〈φaφb〉 = κ eβJSaSb+βKS2

aS2
b . (5)

The overall constant κ is not fixed a priori. By using κ = (b/c2)(1 − c2)[b(1 + c2) − 2c] we
find the following integral representation for the generating function G:

G =
∫

dφ+ dφ− dφ0 e−Sg∫
dφ+ dφ− dφ0 e−Sg=0

(6)

with the ‘action’ defined by

Sg = 1
2

{
A

(
φ2

+ + φ2
−
)

+ 2Bφ+φ− + D
[
Eφ2

0 + 2φ0(φ+ + φ−)
]}

+
g

2

(
eβH φ2

+ + e−βH φ2
− + eβ�φ2

0

)
, (7)

where A = −1 + b
c
, B = 1 − cb,D = b

(
c − 1

c

)
and E = −b

(
c + 1

c

)
. Expressions (3), (6)

and (7) define an integral representation for the partition functions Znc
N of the BEG model on

connected and non-connected rings. At this point one could simply calculate the Gaussian
integrals in (6) and find an explicit representation for the partition functions Znc

N of the BEG
model. We follow instead a different route which can be easily generalized to other spin
models.

It is known in diagrammatic expansions, see e.g. [16], that if we take the logarithm of
the generating function G we end up with only connected diagrams. In our case, we have
only one connected diagram which is the usual ring, i.e., a 1D lattice with periodic boundary
conditions Si = Si+N . Including the proportionality constant κ and the symmetry factor 2N

of a connected ring (one ring) with N vertices (sites) we have

ln G =
∞∑

N=1

(κg)N

2N
ZN. (8)

From (3) and (8) we find a formula for Znc
N in terms of the usual (one ring) partition functions

for the 1D spin model, namely1,

Znc
N = [eln G]gN =

[
exp

∞∑
m=1

(κg)m

2m
Zm

]
gN

= κN

[
ZN

1

2NN !
+ · · · +

Z1ZN−1

4(N − 1)
+

ZN

2N

]
. (9)

Compare formula (9) for N = 4 with figure 1. From (1) we see that ZN is proportional to a
polynomial of degree 2N in the variable u = exp(βH). Since the addition of polynomials
changes their zeros in a nontrivial way, we see from (9) that the Yang–Lee zeros of the model
on the dynamic lattice are in principle quite different from their static counterpart. However,
the numerical results show that they remain quite close to each other, see figure 3. Note that
although the last term on the right-hand side of (9) contains the largest overall numerical factor
for large N, the numerical factor of the term before the last is of the same order of the last one
for N → ∞; thus, it is not clear why the position of the zeros is so similar in both cases of
ZN and Znc

N .
The relationship (9) can be considered the general definition of Znc

N for any 1D spin
model with nearest neighbor interactions whose original partition functions (periodic boundary

1 Throughout this work the notation [f (g)]gN stands for the coefficient of the term of power gN in the Taylor
expansion of f (g) about g = 0.
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Figure 1. Feynman diagrams for Znc
4 .

conditions ) are defined by ZN . Since each of the partition functions ZN can be written in
terms of transfer matrix eigenvalues ZN = λ̃

N

1 + λ̃
N

2 + · · · + λ̃
N

Q, where Q is the size of the
transfer matrix, we can find, as we show next, an expression for Znc

N also in terms of the
eigenvalues λ̃i which are the roots of the secular equation

PQ(λ̃) ≡ λ̃
Q

+ aQ−1λ̃
Q−1

+ · · · + a1λ̃ + a0 = 0. (10)

The coefficients ai, i = 1, . . . ,Q − 1 depend upon the parameters of the specific spin model.
From (8) we have, below g̃ = κg,

ln G =
∑
N�1

(κg)N

2N

(
λ̃

N

1 + λ̃
N

2 + · · · + λ̃
N

Q

)

= −1

2
ln

Q∏
i=1

(1 − λ̃i g̃) = −1

2
ln

[
g̃Q

Q∏
i=1

(
1

g̃
− λ̃i

)]

≡ −1

2
ln RQ(g̃). (11)

Since λ̃i are the roots of (10), the polynomial RQ(g̃) is proportional to (10), i.e.,

RQ(g̃) = g̃QPQ

(
1

g̃

)
. (12)

By comparing (8) with (11) we obtain the following general formula for the partition functions
ZN (one ring):

ZN = −N{ln[RQ(g̃)]}g̃N . (13)

Analogously, from (3) and the exponential of (11) we deduce for Znc
N (connected and non-

connected rings)

Znc
N = {[RQ(g̃)]−1/2}g̃N . (14)

We have suppressed an overall constant κN in (14). In conclusion, all we need to compute the
finite-size partition functions ZN and Znc

N is the secular equation (10) of the corresponding 1D
spin model with periodic boundary conditions. Formulae (13) and (14) will be used throughout
this work in order to find the Yang–Lee zeros of the d = 1 BEG model on the static (one ring)
and dynamic (connected and non-connected rings) lattices but they could be used equally well
for finding the Yang–Lee zeros of any other spin model whose secular equation is known.

We remark that, for computational purposes, formula (13) turns out to be much more
efficient than the traditional transfer matrix solution ZN = λ̃

N

1 + λ̃
N

2 + · · · + λ̃
N

Q, specially for
large N. It is also important to note that for higher spin models S � 2 (Q � 5) no analytic
solution for the roots of a degree 5 or higher polynomial is known in general, so we have
to fix numerical values for the coefficients ai of the secular equation (10) in order to find
the eigenvalues λ̃i , i = 1, . . . ,Q. However, since some of the coefficients depend upon the
magnetic field this implies the assignment of numerical values for the magnetic field itself.
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Therefore, we will not be able to find the eigenvalues as functions of the magnetic field
(λ̃i = λ̃i(h)), and consequently we cannot derive an explicit formula for the partition function
as a function of the magnetic field via ZN = λ̃

N

1 (h) + λ̃
N

2 (h) + · · · + λ̃
N

Q(h). Instead, one could
use ZN = tr(T N) since we know the Q × Q transfer matrix T explicitly for each spin model.
Some tests with the software Mathematica show that (13) is computationally more efficient.

3. Finite-size scaling relations and numerical results

We have found convenient to redefine the transfer matrix eigenvalues λ̃i = λi/c such that
ZN = c−N

[
λN

1 + λN
2 + λN

3

]
. The λi are the roots of the redefined secular equation

λ3 − a2λ
2 + a1λ − a0 = 0, (15)

with, see [7, 9], the coefficients

a0 = bx̃(1 − c2)[b(1 + c2) − 2c],

a1 = b2(1 − c4) + Ax̃(b − c),

a2 = x̃ + Ab,

(16)

and

A = u + 1/u = 2 cosh βH. (17)

Note that the Z2 symmetry H → −H (u → 1/u) is explicit. Back to formulae (12), (13) and
(14) we have for the BEG model

R3(g̃) = 1 − a2g̃ + a1g̃
2 − a0g̃

3, (18)

ZN = −Nc−N {ln[R3((g̃)]}g̃N , (19)

Znc
N = c−N {[R3((g̃)]−1/2}g̃N . (20)

Formulae (18), (19) and (20) can be easily implemented in the computer. Fixing numerical
values for the couplings b, c, x we can find the Yang–Lee zeros numerically. In order to obtain
the magnetic scaling exponent yh from the Yang–Lee zeros we use two finite-size scaling
relations which read [17, 18], dropping corrections to scaling,

u1(N) − u1(∞) = C1

Lyh
= C1

Nyh/d
, (21)

ρ(N) = C2L
yh−d = C2N

(yh−d)/d , (22)

where C1 and C2 are in general complex constants, independent of the number of spins N = Ld .
The quantity u1(N) is the closest Yang–Lee zero to the edge singularity uE = u1(∞) for N
spins. The linear density ρ(N) is the normalized density of Yang–Lee zeros calculated at
u1(N). In practice, we use the first two closest Yang–Lee zeros u1(N) and u2(N) to compute
ρ(N):

ρ(N) = 1

N |u1(N) − u2(N)| . (23)

By comparing two lattices of different sizes Na and Na+1 we can deduce from (21) and (22)
respectively,

yh

d
= −

[
ln

Na+1

Na

]−1

ln

[
�uE(Na+1)

�uE(Na)

]
, (24)
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yh − d

d
=

[
ln

Na+1

Na

]−1

ln

[
ρ(Na+1)

ρ(Na)

]
, (25)

where we may use either �uE(N) = Im(u1(N) − uE) or �uE(N) = Re(u1(N) − uE).
In order to use (24) we must know the position of the Yang–Lee edge singularity

uE = u1(∞). Since the coincidence of the two largest eigenvalues of the transfer matrix
leads to phase transition [19, 20] for a static lattice (one ring), we can find uE in this case from
the double degeneracy condition of the cubic equation (15), which is , see also [7],

27a2
0 + 4a3

1 + 4a3
2a0 − a2

1a
2
2 − 18a0a1a2 = 0. (26)

Expression (26) leads to four solutions for AE = uE + 1/uE and therefore eight solutions for
uE . After checking, for each solution, that the degenerate eigenvalues are indeed the largest
ones and not the smallest ones, and overlapping them with the real curve of zeros we did not
have any difficult in identifying uE . Regarding the second scaling relation (25), once again
for the static case the situation is simpler. We can simply fix the space dimension d = 1 and
consider (25) an independent source of a numerical estimate of yh.

The case of the dynamic lattice is more complicated. The integral representation (4)
allows us to use a saddle point argument, similar to that used in the Blume–Capel case in [10],
which lead us to believe that the position of the Yang–Lee edge singularity for the dynamic
case coincides with uE found from the double degeneracy condition (26). We have no rigorous
proof of this fact. Based on this hypothesis we have calculated yh/d for the dynamic case
from (24). Furthermore, since the lattice itself is a degree of freedom it is not clear now
whether d = 1 still holds. In practice, one can use the second scaling relation (25) to compute
(yh − d)/d and from both results one finds yh and d separately.

Next we analyze two subcases of the BEG model both on the static and dynamic d = 1
lattice and for different temperatures. The first case leads to the traditional result σ = −1/2
while in the second one the conditions for a triple degeneracy of the transfer matrix eigenvalues
are satisfied, and we have a new critical behavior σ = −2/3 for all temperatures except
c = √

2/2 ≈ 0.707 where we are back to σ = −1/2.

3.1. Case I (σ = −1/2): (b, x̃) = (2, 2.5)

Earlier proofs that σ = −1/2 in 1D spin models, see [5–7], assume that the magnetic field
is pure imaginary βH = ıα, i.e., the Yang–Lee zeros lie on the unit circle on the complex
fugacity plane (|u| = |eıα| = 1). Technically, this assumption implies that the Z2 invariant
combination A = u + 1/u = 2 cos α is real, which guarantees that the coefficients of the cubic
equation (15) are also real and the complex eigenvalues must appear in complex conjugated
pairs, so they must share the same absolute value which facilitates the proofs. One exception
is the one-dimensional Q-state Potts model whose zeros are not on the unit circle for Q �= 2
but we still have, see [4], σ = −1/2 for any positive Q �= 1. In the recent proof [8] of
σ = −1/2 for the 1D Blume–Capel model there is no need for a pure imaginary magnetic
field although there are other implicit assumptions. Since the Yang–Lee zeros for the BEG
model, see [10, 15], are not always on the unit circle it is of interest to check numerically if we
still have σ = −1/2 as predicted in [8], for a case where the zeros do not lie on the unit circle.
As such example we can take b = 2 and x̃ = 5/2. For this choice it is also possible to prove
that no triple degeneracy of the transfer matrix eigenvalues is possible for real temperatures;
thus, there will be no crossover to σ = −2/3. Of course, those arguments are only rigorously
correct for the static case.

For b = 2 and x̃ = 5/2 half of the Yang–Lee zeros are inside the unit circle and the
other half outside, see figure 2. Only half of the eight solutions of the double degeneracy

7



J. Phys. A: Math. Theor. 41 (2008) 505002 D Dalmazi and F L Sá
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Im u

(a)

-1 -0.5 0.5
Re u

-1

-0.5
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Im u

(b)

-0.8 -0.6 -0.4 -0.2 0.2 0.4
Re u

-1.5

-1

-0.5

0.5

1

1.5

Im u

(c)

Figure 2. Yang–Lee zeros for the BEG model with b = 2 and x̃ = 2.5 on the complex u-plane
(u = e−βH ), at c = 0.1 (figure 1), c = 0.5 (figure 2) and c = 0.9 (figure 3). In the figures we have
N = 100 zeros. The edges are represented by squares.

condition (26) correspond to true Yang–Lee edge singularities, as shown in figure 2. Under
Z2 symmetry we have u = eβ(HR+ıHI ) → 1/u = eβ(−HR−ıHI ), therefore, the outer edge on the
upper half-plane is Z2 conjugated to the inner edge on the lower half-plane and vice-versa. We
also observe in figure 2 that by increasing the temperature the edges move in the anticlockwise
direction. Defining u = ρ eıα , the two approximate circles with ρ > 1 (outer) and ρ < 1
(inner) split into two new curves on the upper and lower half-planes, respectively at some
temperature close to c = 0.5. The results on the dynamic lattice look quite similar to the static
case. In figure 3, we overlap the zeros for both cases at c = 0.6.

In table 1, we display the finite-size results obtained from formulae (24) and (25) for the
inner edge in both cases of static and dynamic lattices. We have determined the positions of
the Yang–Lee edge singularity uE = u1(∞) for the static case from the double degeneracy
condition (26) and assumed the same value for non-connected rings2. For the outer edge

2 Alternatively, we have made a three parameters fit of (21) to obtain C1, u1(∞), yh/d. However, the quality of the
fit, measured by χ2, is in all cases worse (larger χ2) than a two parameters fit of (21) for C1 and yh/d with a given
value of u1(∞) determined from (26).
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-1 -0.5 0.5
Re u

-1

-0.5

0.5

1

Im u

Figure 3. Yang–Lee zeros for the BEG model with b = 2 and x̃ = 2.5 on the complex u-plane
(u = e−βH ), at c = 0.6, with N = 60 zeros. The zeros on the static (dynamic) lattice are
represented by empty squares (triangles).

Table 1. Finite-size results for the BEG model with b = 2 and x̃ = 2.5 at the temperature c = 0.6
and 110 � N � 190 spins (inner edge).

Na yh (static) yh/d (dynamic ) yh − 1 (static) (yh − d)/d (dynamic)

150 1.991 539 508 388 1.992 328 729 234 0.991 539 508 388 0.992 328 729 234
160 1.999 444 980 343 1.992 843 330 971 0.999 444 980 343 0.992 843 330 971
170 1.999 510 053 393 1.993 293 645 217 0.999 510 053 393 0.993 293 645 217
180 1.999 564 326 434 1.993 690 952 252 0.999 564 326 434 0.993 690 952 252
190 1.999 610 062 131 1.994 044 049 618 0.999 610 062 131 0.994 044 049 618
200 1.999 648 960 537 1.994 359 897 273 0.999 648 960 537 0.994 359 897 273
210 1.999 682 318 897 1.994 644 072 074 0.999 682 318 897 0.994 644 072 074
220 1.999 711 140 922 1.994 901 094 084 0.999 711 140 922 0.994 901 094 084
230 1.999 736 212 993 1.995 134 664 894 0.999 736 212 993 0.995 134 664 894

singularity (ρ > 1) we have found similar results. We note that, although we have taken
the real part of the finite-size relation (21) if we replace it by the imaginary part instead, not
displayed, the differences are negligible.

In order to extrapolate our finite-size results to N → ∞ we use the BST algorithm
[21, 22]. We assume that there is an expansion:

yh(N) = yh(∞) +
A1

Nw
+

A2

N2w
+ · · · . (27)

The BST extrapolation consists of approximating the function yh(N) by a sequence of ratios
of polynomials with a faster convergence than the original sequence yh(Na). The parameter
w is not fixed a priori. One can define, see [22, 23], the best value for w by minimizing
the uncertainty of the method which is twice the difference between the two approximants
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Figure 4. BST extrapolation of yh/d and its uncertainties for the BEG model with b = 2 and
x̃ = 2.5 as a function of the BST parameter ω for the static (a) and dynamic (b) lattices at c = 0.6
(inner edge).

Table 2. BST extrapolations of yh/d, with the BST parameter ω = 1, for the BEG model
with b = 2 and x̃ = 2.5 at edges inside (inner) and outside (outer) the unit circle at different
temperatures.

c 0.1 0.6 0.9

yh(∞) (outer/static) 2.000 000 000 01(2) 1.999 999 999 9999(5) 1.999 999 999 9999(2)
yh(∞)/d (outer/dynamic) 2.000 000 0008(4) 2.000 000 000 00(1) 2.000 000 000 0000(6)
yh(∞) (inner/static) 1.999 999 9997(8) 2.000 000 000 00(4) 1.999 999 999 999(2)
yh(∞)/d (inner/dynamic) 2.000 000 000(4) 1.999 999 999 99(2) 2.000 000 000 000(2)

Table 3. BST extrapolations of (yh − d)/d, with the BST parameter ω = 1, for the BEG model
with b = 2 and x̃ = 2.5 at edges inside (inner) and outside (outer) the unit circle at different
temperatures.

c 0.1 0.6 0.9

yh − 1 (outer/static) 1.000 000 000 01(2) 0.999 999 999 9999(5) 0.999 999 999 9999(2)

(y
(ρ)
h (∞) − d)/d (outer/dynamic) 1.000 000 0008(4) 1.000 000 000 00(1) 1.000 000 000 0000(6)

yh − 1 (inner/static) 0.999 999 9997(8) 1.000 000 000 00(4) 0.999 999 999 999(2)

(y
(ρ)
h (∞) − d)/d (inner/dynamic) 1.000 000 000(4) 0.999 999 999 99(2) 1.000 000 000 000(2)

appearing in the last sequence before the final extrapolated result yh(∞). In figures 4(a) and
4(b), we display both yh(∞) and the uncertainty (error bars) as a function of the free parameter
w. The value w = 1 seems to be the stablest one, so we use w = 1 henceforth. All results
in tables 2 and 3 are consistent with yh = 2 and d = 1 for the static and dynamic lattices.
Therefore, we conclude that σ = (d − yh)/yh = −1/2 for both the static and the dynamic
cases even though the magnetic field is not pure imaginary, which is in agreement with the
demonstration of [8] which assumes a usual transfer matrix solution (one ring).

10



J. Phys. A: Math. Theor. 41 (2008) 505002 D Dalmazi and F L Sá

3.2. Case II (σ = −2/3): λ1 = λ2 = λ3 and βH = ±ıπ/2

We have shown in [9], for the static case, that we might have a new critical behavior at the
Yang–Lee edge singularity in one-dimensional spin models if we fine tune the parameters of
the model in such a way that a triple degeneracy of the solutions of the cubic equation (15) is
achieved. This requires 3a1 = a2

2 and a1a2 = 9a0, which can be written respectively as

x̃2 + b2A2 + Ax̃(3c − b) − 3b2(1 − c4) = 0, (28)

(b − c)Ax̃ (x̃ + bA) + b3(1 − c4)A = b(1 − c2)[8b(1 + c2) − 18c]x̃. (29)

An interesting solution of (28) and (29) comes out when we fix the Yang–Lee edge singularity
at A = 0 which corresponds to βH = ±ıπ/2. In this case, (28) and (29) imply

b = 9c

4(1 + c2)
, (30)

x̃ = b
√

3(1 − c4) = 9c

4

√
3(1 − c2)

1 + c2
. (31)

In [9], in order to have a new critical behavior with σ = −2/3(yh = 3), besides the triple
degeneracy conditions (28) and (29) we have also assumed x̃ �= x̄ where x̄ = (1−c2)b2/|b−c|.
Otherwise, λ1 = x̃(b − c)/b becomes a solution of (15) and consequently we may no longer
have, see [9], yh = 3. By matching x̄ with x̃ given in (31) we find out the real temperature
c = √

2/2 ≈ 0.707 which requires special care. In particular, it is possible to prove exactly
that yh = 2 when c = √

2/2, and conditions (30) and (31) are satisfied as we show next. This
special point in the parameters space of the BEG model is similar to the Q = 3 states Potts
model, where one transfer matrix eigenvalue is independent of the magnetic field and the two
remaining ones acquire a simple form. Plugging c = √

2/2 and b , x̃ given by (30) and (31)
in (15) we find the simple solutions

λ1 = x̃(b − c)

b
= 3

4
√

2
, (32)

λ2 = 3

4
√

2
[1 + A +

√
A(A + 2)], (33)

λ3 = 3

4
√

2
[1 + A −

√
A(A + 2)]. (34)

Following [8, 9], imposing that λ1 = eıϕλ2 we derive A= −1 + cos ϕ and the three eigenvalues
will have the same magnitude since λ3 = λ1 eıϕ . Consequently, ZN = c−N

[
λN

1 + λN
2 + λN

3

] =
c−NλN

1 [1 + 2 cos Nϕ]. Therefore, ZN = 0 leads to ϕk = 2π(3k + 1)/3N with k =
0, 1, . . . , N − 1. So the 2N zeros of ZN are determined exactly and uniquely from

Ak = −1 + cos ϕk, ϕk = 2π

3N
(3k + 1), k = 0, 1, . . . , N − 1. (35)

Thus, we know the exact position of the partition function zeros for the static case and finite
N at the temperature c = √

2/2 with b, x̃ given by (30) and (31).
The Yang–Lee edge singularity occurs in this case at the triple degeneracy point

λ1 = λ2 = λ3, i.e., ϕ = 0 which implies A = 0(uE = ±ı). Therefore, it is natural to
suppose that the smallest phase ϕ0 = 2π/3N corresponds to the closest zero to the Yang–
Lee edge singularity. This is in agreement with our numerical calculations. Consequently,
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Figure 5. Yang–Lee zeros for the BEG model with b = 9c/4(1 + c2) and x̃ = b
√

3(1 − c4) on
the upper half complex u-plane (u = e−βH ), at c = 0.1 (a) and c = 0.65 (b). In the figures, we
have N = 60 zeros, and the solid curve stands for the unit circle.

inverting the relation u + 1/u = A0 we have the following large N expansion for the closest
zero to the Yang–Lee edge singularity and its complex conjugated:

u±
1 (N) = 1

2

[
A0 ±

√
A2

0 − 4
]

≈ ±ı − 1

4

(
2π

3N

)2

+

(
1

48
∓ ı

32

)(
2π

3N

)4

+ · · · . (36)

A comparison with (21) leads exactly to yh = 2 and consequently σ = −1/2 for the static
case at the special temperature c = √

2/2.
As explained in [9], although the cubic equation can be exactly solved for any temperature,

the explicit solutions are so complicated in general that the above arguments cannot be repeated,
so we have to stick to numerical calculations even in the static case for c �= √

2/2. Before we
go on, it is important to mention that our numerical calculations of the Yang–Lee zeros for the
static case, at the special case c = √

2/2, are in agreement with the exact results (35) within
the first 30 digits for N � 150 spins.

For b and x̃ given in (30) and (31) we have verified numerically that for c <
√

2/2 only
a small fraction of the Yang–Lee zeros lies on the unit circle S1 (|u| = 1), see figure 5(a),
forming a short arc of zeros. The curve of zeros which are not on S1, if analytically continued
at the top crossing point with S1, splits the short arc of zeros into two different sequences of
zeros which tend to accumulate at two different Yang–Lee edge singularities. Namely, the left
edge of the arc approaches uE = ı(A = 0) in the anticlockwise direction, as we increase
the number of spins, while the right edge approaches another singularity ũE in the clockwise
direction. As we increase the temperature c → (

√
2/2)− we note that ũE → uE and the

fraction of zeros on the unit circle decreases. It turns out that the right edge singularity ũE is
of the usual type with yh ≈ 2(σ ≈ −1/2), as we have checked numerically, while for uE = ı

we have found yh ≈ 3(σ ≈ −2/3). There are no edge singularities outside the unit circle.
However, the zeros out of S1 all move to S1 as c → (

√
2/2)−. We find out numerically that

all zeros belong to S1 for c �
√

2/2 which is in agreement with the analytic result (35) at the
special point c = √

2/2. At c = √
2/2, for both static and dynamic cases, the Yang–Lee zeros

seem to have a pairwise behavior, see figure 6. For c >
√

2/2, as we increase the temperature
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Figure 6. Yang–Lee zeros for the BEG model with b = 9c/4(1 + c2) and x̃ = b
√

3(1 − c4) on
the upper half complex u-plane (u = e−βH ), at c = √

2/2. In the figure we have N = 60 zeros.
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Figure 7. Yang–Lee zeros for the BEG model with b = 9c/4(1 + c2) and x̃ = b
√

3(1 − c4) on
the upper half complex u-plane (u = e−βH ), at c = 0.75 (a) and c = 0.9 (b). In both figures we
have N = 60 zeros.

the size of the arc of zeros on S1 decreases, see figure 7. In table 4, we display our final
extrapolated results for the magnetic scaling exponent yh. Our results for c >

√
2/2 show

that the right edge uE = ı possesses a new critical behavior with yh ≈ 3, see figures 8(a) and
8(b). For the left edge we have the usual result yh ≈ 2. So the new critical behavior, contrary
to the cases treated in [9], now appears at the closest edge to the positive real axis. Note also
that the dynamics of the lattice did not change the critical behaviors at the edges.
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Figure 8. BST extrapolation of yh/d and its uncertainties for the BEG model with b = 9c/4(1+c2)

and x̃ = b
√

3(1 − c4) for zeros close to the edge uE = i, as a function of the BST parameter ω,
on the static (a) and dynamic (b) lattices, at c = 0.9.

Table 4. BST extrapolation of yh/d, with the BST parameter ω = 1, for the BEG model with
b = 9c/4(1 + c2) and x̃ = b

√
3(1 − c4) close to the edge uE = i at different temperatures.

c yh(∞) (static) yh(∞)/d (dynamic)

0.1 2.000 000 0000(2) 2.000 000 0001(8)
0.65 2.00(1) 2.00(2)√

2/2 2.000 000 00(1) 1.999 999 999 9999(4)
0.75 3.0000(1) 3.0000(4)
0.9 3.000 0000(3) 3.000 0000(6)

4. Conclusion

First of all, we have verified numerically in a Z2 symmetric 1D spin model that even when
the magnetic field is not pure imaginary (no circle theorem) we still have the Yang–Lee edge
critical exponent σ ≈ −1/2 in most of the cases. This is in agreement with a recent proof
presented in [8], see also [9], based on the transfer matrix approach. In the dynamic case,
including non-connected rings, although we have an expression for the partition function based
on the transfer matrix eigenvalues of the static case, see (20), such expression is apparently
too complicated to allow us a direct generalization of [8] to non-connected rings. So we have
to stick to numerical results which still lead, usually, to σ ≈ −1/2. Thus, the universality
of the Yang–Lee edge singularity seems to go beyond static lattices for one-dimensional spin
models. We must mention at this point that the situation is different in the d = 2 case, see
[24], where the dynamics of the lattice (non-connected Feynman diagrams) leads apparently
to the mean field result σ = +1/2 instead of σ = −1/6 which is the result predicted in [25]
via conformal field theory and confirmed numerically, see e.g. [26, 27], for the s = 1/2 Ising
model on static lattices.

Second, by fine tuning the couplings b and x of the BEG model to achieve triple degeneracy
of the transfer matrix eigenvalues λ1 = λ2 = λ3, we have found once again, see [9], a new
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critical behavior with σ = −2/3 for both the static and the dynamic lattices. This is an
indication that the new critical behavior, whenever available, is as much universal as the usual
result σ = −1/2 and holds also for dynamic lattices.

As in [9], we have found that whenever the new critical behavior (σ = −2/3) is present at
some edge singularity, we have another edge singularity with the usual exponent σ = −1/2.
However, differently from [9], in the second example analyzed here (case II), above some
temperature (c >

√
2/2), the new critical behavior appears at the closest edge to the positive

real axis. Those facts may be relevant in the development of a possible tricritical version of the
ıϕ3 field theory which describes the usual critical behavior of the Yang–Lee edge singularity.

Last, at c = √
2/2 and b, x̃ given in (30) and (31), we have shown exactly that, although

we have triple degeneracy of the transfer matrix eigenvalues we still have the usual critical
behavior with yh = 2(σ = −1/2). Therefore, the triple degeneracy condition λ1 = λ2 = λ3,
though necessary for a new critical behavior, is not a sufficient condition in general.
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